Predict the cluster memberships of a new data set from a MonoClust
object.
# S3 method for MonoClust predict(object, newdata, type = c("centroid", "medoid"), ...)
object | MonoClust result object. |
---|---|
newdata | Data frame containing the values to be predicted. If missing, the memberships of the MonoClust object are returned. |
type | Type of returned cluster representatives. Either |
... | Further arguments passed to or from other methods. |
A tibble of cluster index in cname
and either centroid values or
medoid observations index based on the value of type
argument.
library(cluster) data(ruspini) set.seed(1234) test_index <- sample(1:nrow(ruspini), nrow(ruspini)/5) train_index <- setdiff(1:nrow(ruspini), test_index) ruspini_train <- ruspini[train_index, ] ruspini_test <- ruspini[test_index, ] ruspini_train_4sol <- MonoClust(ruspini_train, nclusters = 4) predict(ruspini_train_4sol, newdata = ruspini_test)#> # A tibble: 15 x 3 #> cname x y #> <chr> <dbl> <dbl> #> 1 6 44.7 146. #> 2 6 44.7 146. #> 3 4 19.6 65.9 #> 4 4 19.6 65.9 #> 5 6 44.7 146. #> 6 4 19.6 65.9 #> 7 4 19.6 65.9 #> 8 4 19.6 65.9 #> 9 7 97.4 115. #> 10 5 68.7 20.3 #> 11 5 68.7 20.3 #> 12 5 68.7 20.3 #> 13 6 44.7 146. #> 14 6 44.7 146. #> 15 5 68.7 20.3